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1.[10] For each of the following statements determine whether it is True or False.

(a) Two subsets of a vector space V that span the same subspace of V must
be equal.

(b) Every linearly independent set of vectors in Rn is contained in some basis
for Rn .

(c) In an inner product space, if ‖u‖ = ‖v‖ , then u = v .

(d) In an inner product space, if u and v are orthogonal, then
| 〈u , v 〉 | = ‖u‖ ‖v‖ .

(e) If v0 is a nonzero vector in a vector space V , then the formula
T (v) = v0 + v defines a linear operator on V .

(f) If T1 : U → V and T2 : V → W are linear transformations, and if T1 is
one-to-one, then T2 ◦ T1 is also one-to-one.

(g) If A is diagonalizable, then there is a unique matrix P such that P−1AP
is diagonal.

(h) If T : V → V is a linear operator, then det(T ) = det([T ]B) where B is
any basis for V .

(i) Two similar matrices A and B have same rank, nullity and eigenvalues.

(j) If T1 : U → V and T2 : V → W are linear transformations, and if
B , B′′ , and B′ are bases for U , V , and W , respectively, then
[T2 ◦ T1]B′,B = [T2]B′,B′′ [T1]B′′,B .
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2.[9] Let W =
{[a 0

b a+ b

] ∣∣∣ a, b ∈ R
}

be a subset of the vector space M22 .

(a) Prove that W is a subspace of M22 .

(b) Find a basis and the dimension of W .
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3.[14] Let A =

−1 0 −4
0 −1 2
0 0 1

 .

(a) Find all eigenvalues of A .

(b) Find bases for all eigenspaces of A .

(c) Find a matrix P that diagonalizes A .

(d) Find A100 . (Hint: You do not have to find P−1 ).
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4.[8] Consider R5 with Euclidean inner product and let W be the subspace of R5

spanned by the vectors w1 = (1,−4, 0, 0, 0) , w2 = (0, 0, 1,−2, 5) w3 = (1,−4, 0, 0, 1)
and w4 = (0, 0, 0, 0, 1) . Find a basis for the orthogonal complement of W .
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5.[11] Let W =
{[a 0

0 b

] ∣∣∣ a, b ∈ R
}

be a subspace of the vector spaces M22 and let

T : P1 → W such that T (a+ bx) =

[
a 0
0 b

]
.

(a) Show that T is a linear transformation.

(b) Find ker(T ) .

(c) Is T an isomorphism ? Why?
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6.[8] Let T1 and T2 be linear operators from R2 to R2 such that T1 rotates a vector
90 degrees counterclockwise, and T2(x, y) = (x− 2y , x− y) .

(a) Find a formula for the composition (T2 ◦ T1)(x, y) .

(b) Is (T2 ◦ T1)−1 = T1 ◦ T2 ? Why?
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7.[6] Prove that if A is an n × n diagonalizable matrix with n real eigenvalues
λ1 , λ2 , · · · , λn , then

|A| = λ1λ2 · · · λn .
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8.[10] In the vector space P2 , define the inner product of p and q by

〈p,q〉 =

∫ 1

0

p(x)q(x)dx .

Use the Gram-Schmidt process to find an orthonormal basis for P2 starting with
the basis {p1 = 2 , p2 = 1− x , p3 = x2 } .
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9.[14] Let T : P1 → P1 be a linear operator defined by T ( a + bx ) = a + b(x + 1) .
Also let B = {p1 = −1 , p2 = x} and B′ = {q1 = 2− x , q2 = 1 + x} be bases
for the vector space P1 .

(a) Find the matrix for T relative to the basis B .

(b) Find the matrix for T relative to the bases B and B′ .

(c) Find [T (a+ bx)]B′ where a+ bx is any polynomial in P1 .

(d) Find the determinant, rank and nullity of T .
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Answers
Q1: F T F F F F F T T T

Q2:
(a) Show that it is nonempty and closed under addition and scalar multiplication.

(b) {
[
1 0
0 1

]
,

[
0 0
1 1

]
} is a basis and dim(W ) = 2 .

Q3:
(a) −1,−1, 1 .

(b) {(−2, 1, 1)} is a basis for the eigenspace corresponding to λ = 1 and {(1, 0, 0) , (0, 1, 0)}
is a basis for the eigenspace corresponding to λ = −1 .

(c) P =

−2 1 0
1 0 1
1 0 0

.

(d) A100 = I .

Q4:
{


4
1
0
0
0

 ,


0
0
2
1
0


}

is a basis for W⊥ .

Q5:
(a) Show that T (p + q) = T (p) + T (q) and T (kp) = kT (p) .

(b) ker(T ) = {0} .

(c) Yes because T is a linear transformation which is one to one and onto.
Q6:

(a) (T2 ◦ T1)(x, y) = (−2x− y , −x− y) .

(b) Yes.
Q7: See solution of assignment 3.

Q8: {r1(x) = 1 , r2(x) =
√

3 − 2
√

3x , r3(x) = 6
√

5x2 − 6
√

5x +
√

5 } is an or-
thonormal basis.

Q9:

(a) [T ]B =

[
1 −1
0 1

]
.

(b) [T ]B′ , B =

[−1
3

0
−1
3

1

]
.

(c) [T (a+ bx)]B′ =

[
1
3
a

1
3
a+ b

]
.

(d) det(T ) = 1 , rank(T ) = 2 and nullity(T ) = 0 .


